
use of heat pipes with a given combination of materials of the wall, capillary-porous struc- 
ture and heat-transfer agent, under constant operating conditions and under variable condi- 
tions. 

NOTATION 

pH, hydrogen indicator; c02, concentration of oxygen in the heat-transfer agent; Rer, 
radial Reynolds number; Rea, axial Reynolds number; U, dimensionless axial velocity component 
of the vapor flow;B, geometric parameter; C, dimensionless axial coordinate; Y, dimensionless 
radial component;X, axial coordinate; Y, radial coordinate; d, r, inside diameter and radius 
of the heat pipe, respectively; L, length of the condensation zone; Lp, length of the plug 
of noncondensible gas; Lact, length of the active part of the condensation zone; T, time; 
V, volume; X*, coordinate of the start of reverse flow; S, area of the corroding surface; 
t, temperature; mH2 , mass of hydrogen liberated. Subscripts: cyl, cylinder; vgf, vapor--gas 
front. 
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RATE OF SURFACING OF A GAS PLUG IN ANNULAR AND RECTANGULAR 

VERTICAL CHANNELS 

A. N. K o v a l e v  UDC 532.529 

Relations are proposed for the limiting surfacing velocities of plugs used within 
a broadrange ofgeometric parameters. 

When constructing the diagram depicting two-phase flow regimes for calculation of plug 
flow in vertical channels of dlfferent shapes, it is necessary to know the rate of surfacing 
of a single gas plug in a capped pipe or the rate of descent of fluid at which the plug is 
suspended in the channel. 

The limiting (steady-state) surfacing velocity of a gas plug is determined by the hydro- 
dynamics in the flow of the fluid around the frontal part and does not depend on the length 
of the plug. When inertial and buoyancy forces predominate, this velocity is determined by 
the relation [i]: 

V .  ] / ~  = A~, (1)  Fr  (I) = l / g  (O' - -  p")l 

where ~ is a characteristic linear dimension of the channel, equal to the diameter for a pipe, 
the external diameter for an annular channel, the diameter of the shell for a rod assembly, 
and the width (of the larger side) for a rectangular channel; A~ is an empirical coefficient 
determined from Fig. la. 

The data in [i] for A~ in rectangular channels was used in [2] to propose the linear 
approximation 

...... Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 53, No. 4, pp. 557-566, October, 
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Fig. i. Dependence of the coefficients Az and At on the chan- 
nel geometry: i) rectangular channel, X = 1 -- 6/b; 2) annular 
channel, X = D2/D,; 3) rod bundle, X = i -- Deqv/Dsh. 

A1 ---- 0.23 -]- 0,136/b. (2) 

Similarly, the constant Az for annular channels, represented in the form of a function of the 
ratio D2/Dz: 

A1 = 0.345 -~ (0.23 ] / ~ - -  0.345) DJDI, (3) 

a l s o  agrees  we l l  wi th  the  da t a  in  [1] .  

The va lue s  0.23 and 0.345 were ob ta ined  on the  b a s i s  of  an approximate a n a l y t i c a l  s o l u -  
t i o n  of  the  problem of  p o t e n t i a l  f low about  an i n f i n i t e  plug in  p lane  and c i r c u l a r  v e r t i c a l  
channels [3, 4]. 

In a rectangular channel with 6/b << i, the plug surfacing velocity will be the same 
as in an annular channel if the geometric dimensions of the two channels are related as 
follows: 

b = x(D~ + D,)/2, 6 = (D~- D2)/2 (4) 

The surface forces change U~ by no more than 3% for circular pipes (in the absence of 
the effect of viscous forces) if Bo(Do) > 6.2 [2]. We will determine the corresponding condi- 
tion forrectangular and annular channels. We will assume that the characteristic linear di- 
mension of the channel l, determining the effect of the surface forces, is a linear function 
of D, and D2 in an annular channel. Then three variants are possible for l, giving the 
asymptotic for the characteristic pipe dimension: ~, = D, -- D2, l$ = D, and As = D, + Dz = 
H/z. For a rectangular channel, accordingly, we have ~, = Deqv , 12 = b and %3 = H/z. Con- 
sidering that the condition of the absence of surface forces (<3%) is determined by the in- 
equality Bo(~) > 6.2 for any channel geometry and taking into account that the effect of the 
surface forces on U~ was not indicated in experiments conducted in [i] (3% error) for the 
numbers Bo(ll)~ 2.6, Bo(A~) ~4.8 and Bo(~s) ~iI.9, we find that ~ E ~,. Then Eqs. (i)- 
(3) are valid if 

Bo (n/n) > 6.2. (5) 

Let us examine another restriction on the use of Eqs. (1)-(3). In accordance with Eqs. (I) 
and (2), an increase in the width of a rectangular channel should be accompanied by an in- 
finite increase in the surfacing velocity of the plug. It is natural to assume that this is 
impossible and that with an increase in channel width, the effect of the latter on U~ will 
diminish and the plug surfacing velocity will no longer depend on the clearance~ To de- 
scribe this transition, we will use experimental data from [5] on the rate or surfacing of 
single large bubbles in a channel with plane-parallel walls filled with a fluid which wets 
the walls. According to this data, the bubble surfacing velocity U~ b increases with an in- 
crease in its diameter in proportion to V (V is the volume of the bubble) for bubbles with 
D/~ << 40. At D/~ > 40, the effect of bubble diameter diminishes, while the authors propose 
the following relations for ub 

[6,2Bo(8) at Bo<Bo0, (6) 
Fr(8) 

6.2Boo at BomB%, (7) 
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Fig. 2. Comparison of the plug surfacing velocity 
in a rectangularchannel and the bubble surfacing 
velocity in a plane-parallel channel. 

where Boo = 0.23. 

The comparison shown in Fig. 2 was obtained on the basis of data from [i, 5] under the 
condition of equality of the width of the rectangular channel to the bubble diameter. Equa- 
tion (i) was validated by the author of [i] for b/6 ~.18, and the dashed line in Fig. 2 was 
constructed on the basis of the assumption that Eq. (i) remains valid for b/6 > 18. It can 
be seen from the figure that the plug surfacing rate is less than the bubble surfacing rate, 
which is related to the effect of smaller lateral walls. The effect of the walls decreases 
with an increase in b/6, and the ratio of the velocities approaches unity at the same values 
of b/6 at which the effect of bubble diameter on the rate of its surfacing decreases. This 
allows us to propose that the plug surfacing velocity in a rectangular channel for b/6 > 40 
will be determined by Eqs. (6) and (7). 

Then reducing the expressions determining Um in a rectangular channel to a form analogous 
to (7), we obtain the following formulas from (I), (2), (6), and (7) for U : 

I 
]/b-~ Bo(6) at ]/b76<6,2; Bo< Boa, (8) 

' Fr(6) = "]/b~Bol at -1/b-~<6,2; Bo~Boa, (9) 

6,2 Bo (6) at V'b/-6-~ 6,2; Bo < Bo,, (i0) 

6,2Bo, at ]/b-~>6,2; Bo/>Boz, (i i)  
where Bo, = 0.23 + 0.136/b. 

These formulas are valid if Bo(~/~) > 6.2. This condition is incompatible with the re- 
strictions limiting the range of application of Eq. (8), but we will keep this equation be- 
cause it makes it possible to understand the principle underlying the construction of the 
remaining formulas. 

It follows from (3), (4), and (9) that the surfacing velocity for square and circular 
channels will be determined by the equations: 

Fr (b) = B~, (12) 

Fr (Do) = I / / 2  Boz. (13) 

To reduce these equations to forms with analogous right sides (without coefficients of 
the type ~7~, it suffices to take half the wetted perimeter as the characteristic dimension 
for the inertial forces. Then instead of Eq. (i) we obtain 

Fr(H/2)= A~, (14) 

where A~ is determined from Fig. lb. The following linear approximation is acceptable for A2 
in the case of annular and rectangular channels: 

A2=O.23+O.O45(1--D2/Dz), (15) 

A~ = 0,23+0.0256/b. (16) 

The introduction of a new characteristic linear dimension which is useable for any geom- 
etry is also justified by the fact that Aa is less dependnet on channel geometry than Ax and 
has roughly the same values for different channel geometries. The strong dependence of A, on 
X for rod bundles, constructed and applicable only for seven rods (for one rod, curve 3 in 
Fig. la should be replaced by curve 2), may be the reason for the large error in the deter- 
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mination of the surfacing velocity for X > 0.8. This shortcoming is eliminated with the in- 
troduction of the new characteristic dimension, and system (8)-(11) is changed to the follow- 
ing form: 

ZBo(5) at Z ~  1; Bo(5)<Bo2, (17) 

ZBo 2 a t  Z . ~ I ;  Bo(f )>Bo~,  (18) 
Fr (~/2) = 

Be(8) a t  Z > l ;  Bo(5)<B%,  (19) 

Be 2 -at Z >  I; Bo(f )>Bo2,  (20) 

where Boa = A2, Z = 6 .2  26]'2"~. 

Here, Aa becomes the boundary value of the number Bo(~), with the effect of surface 
forces diminishing above this value (if condition (5) is satisfied, of course). 

NOTATION 

0 ~, 0", density of liquid and gas; o, surface tension; g, acceleration due to gravity; 
Do, diameter of pipe, D~ and D=, external and internal diameters of annular channel; b, 8, 
width and clearance of rectangular channel; Dsh , diameter of shell of rod bundle; U , limiting 
plug surfacing velocity; Z, linear dimension; Be(1) = I//a/g(p' -- 0"), Bond number. 

io 
2. 
3. 
4. 
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THEORY OF GASLIFTS 

Yu. A. Buevich UDC 532.529:622.276.5 

On the basis of a simplified model, a new method is proposed for the analysis of 
unsteady-state gaslifts, and instabilities of steady-state gaslift processes are 
demonstrated. 

A considerable part of the petroleum which is produced is recovered by the use of 
various types of gaslifts for exploiting wells, and the importance of this method in the 
total volume of petroleum produced shows a clear tendency to increase. In this connection, 
the problem of optimizing gaslifts is becoming particularly important, since this is related 
to increasing the production of wells and decreasing their capital and operating costs; the 
solution of this problem is not possible without the effective modeling of the processes 
occurring in gaslifted wells. However, the existing methods of modeling and calculation of 
these processes are unsuitable for analyzing the significantly unsteady-state phenomena which 
occur in gaslifts. In addition, even under steady-state conditions they are not well adapted 
to explaining the distributions of the gas--liquid mixture in the ascending column of the 
well. In fact, these methods are based on semiempirical considerations of the steady-state 
regime only [I], and in principle they do not extend beyond the models proposed as much as a 
generation ago [2]. 

Under the conditions occurring in practice the gas lift process often appears to be 
unsteady-state in nature. Unsteadiness occurs in the process of starting up a well, and may 
also be introduced when the gaslifts are organized to operate batchwise [3]. In addition, 
the steady-state regime sometimes proves to be unstable, which leads ultimately to the genera- 
tion of self-excited oscillations [4]. The author knows of only a single formalized approach 
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